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Introduction

I sothermal spinning flows of liquid crystalline
polymers (LCPs) have been studied by Ramal-

ingam and Armstrong1 for qualitative features; by
Forest, Wang, and Bechtel2,3 to include general ne-
matic LCP behavior and stability of spinning states;
and by Forest and Ueda4 to include an Avrami-
based kinetics of crystallization. These studies
employed slender 1-D models derived from the 3-
D constitutive and flow equations for LCPs due to
Bhave, Menon, Armstrong, and Brown (BMAB).5
Here we extend our study to spinning flows of ther-
motropic LCPs (TLCPs). We model TLCPs by ac-
knowledging both isotropic and anisotropic contri-
butions to stress, as discussed further in this section.
The TLCP spin process is simulated with steady-
state boundary conditions imposed at fixed up-
stream and downstream locations. The glass tran-
sition temperature is a free boundary, below which
the material may be modeled in two ways: tradi-
tionally, as a rigid cooling fiber (in spin models of
PET and viscoelastic fluid melts,6–10 and through a
single-phase model developed by Forest, Zhou, and
Wang.11

We exhibit that the single-phase model solution
smoothly evolves toward a constant velocity down-
stream when the TLCP is realistically characterized;
thus, we remove the arbitrary imposition of a rigid
fiber below glass transition temperature. The re-
moval of this arbitary condition is fundamental: the
single-phase model allows us to calculate process
stability in the form of the critical draw ratio, and
then we compare how material and process param-
eters affect the maximum stable drawing speed.
Standard industry6 models and codes are two
phase, defying a stability evaluation.

The goal of this article is to apply the TLCP spin
model in a realistic physical regime. We employ ac-
cepted forms for air drag and a functional heat loss
coefficient; we also consider a temperature-depen-
dent, short-range intermolecular potential and in-
corporate LCP rotary diffusivity. We further incor-
porate an isotropic stress contribution in the total
stress in the constitutive form of BMAB, which we
propose to measure experimentally at melt temper-
atures where the LCP has only an isotropic equilib-
rium phase.

The article is organized as follows. We first
briefly recall the model. We then collect experimen-
tally based material and processing data for TLCPs,
nondimensionalize the equations, and identify ap-

proximate values of important parameters and em-
pirical correlations. Finally, we present the numer-
ical fiber spinning solutions and stability results,
and benchmark the model against published exper-
imental and industrial reports of nonisothermal fi-
ber spinline behavior.6,7,12–14 We note the models of
George6 and Vassilatos et al.7 are Newtonian, non-
isothermal; Metzner and Prilutski12 use an isother-
mal Doi model, whereas Zieminski and Spruiell13

use a nonisothermal Maxwell (isotropic) model with
crystallization kinetics; Picken et al.14 focus on solid
fiber properties induced by spinning. Our model in-
corporates anisotropic nonisothermal behavior, but
without crystallization; we infer solid fiber proper-
ties (e.g., elastic modulus) as in Picken et al.14 We
emphasize that predictions in the TLCP spinning re-
gime are often dramatically different from the same
model in other parameter regimes. From a realistic
TLCP spinning regime, we document model pre-
dictions for spinline and spun fiber response to ma-
terial, processing, and empirical parameters.

3-D Model Formulation

The governing equations are given in the follow-
ing:

Incompressibility condition

= · v 5 0 (1)

Conservation of momentum

d
r v 5 = · t 1 rg (2)

dt

where r is the density of the polymeric liquid, v is
the velocity vector, t is the total stress tensor, rg is

the external force due to gravity, and ( · ) denotes
d
dt

the material derivative


( · ) 1 v · =( · ).
t

Constitutive equation for stresses:

t 5 2pI 1 t̂

t̂ 5 t̂ 1 t̂iso aniso

t̂ 5 2h(T)D (3)iso

t̂ 5 3ckT[(1 2 N(T)/3)Q 2 N(T)(Q · Q)aniso

t1 N(T)(Q : Q)(Q 1 I/3) 1 2l(T)(=v : Q)(Q 1 I/3)]

ADVANCES IN POLYMER TECHNOLOGY 315



ADV WILEY LEFT INTERACTIVE

short
standard

MODEL STUDY OF SPINNING OF THERMOTROPIC LIQUID POLYMERS

where D is the rate-of-strain tensor, Q is the orien-
tation tensor,2 and p is the scalar pressure. In eq. (3),
h(T) is modeled as the effective isotropic viscosity,
presumed to obey an Arrhenius relation,

E/R(1/T21/T )0h(T) 5 h e (4)0

where E is the activation energy, R is the gas con-
stant, and h0 is the effective isotropic viscosity for
LCPs at an experimental temperature T0 above the
melting point.

The dimensionless scalar parameter N(T) char-
acterizes the strength of the intermolecular poten-
tial, c is the number of polymer molecules per unit
volume, and l(T) is the relaxation time of the LCP
molecules associated with rotation of the dumbbell
molecules, k is the Boltzmann constant, and T is ab-
solute temperature. The value of N(T) is chosen to
match the isotropic-to-nematic phase transition at a
critical temperature. The anisotropic stress contri-
bution corresponds to orientational stress duet̂aniso

to rotary diffusion. For thermotropic LCPs, we pro-
pose that h0 is given by the experimentally deter-
mined viscosity of the isotropic melt at temperature
T0 . It seems clear that the high temperature melt, for
which has a nonzero zero-strain-rate viscos-Q , 0,
ity. An alternative constitutive model for HPC (hy-
droxypropylcellulose) is discussed in Huang,
Magda, and Larson,15 and related to the stress force
discussed by Walker and Wagner.16 Namely, one
can posit a stress relationship for imposed steady
shear of the form

t̂ 5 ckTlġ f (Q)H(lġ) (5)

where ġ is the shear rate, the scalar function f (Q) is
assumed by these authors to depend on the uniaxial
order parameter s, and H is an empirical shear thin-
ning function. This stress relation is equivalent for
imposed shear to our posited form t̂ 5 t 1 tiso aniso

if we identify where h̄ is a parameterh [ 3cklh̄,0

with the units of temperature, and use the nematic
eq. (8).

We also posit an Arrhenius relation for relaxation
time,

v(1/T21/T )0l(T) 5 l (Q)e (6)0

where l0(Q) is the relaxation time of the LCP at the
temperature T0 , and v is a parameter (units of tem-
perature) to be determined from experiments. We
also consider the orientation dependence on rotary
diffusivity,17

23˜l 5 l 1 2 Q : Q (7)0 0S D2

Without loss of generality, we select the same ex-
perimental temperature T0 in eqs. (4) and (6), which
we later choose as the melt temperature for conve-
nience (i.e., Any other choice of experi-T 5 T ).0 melt

mental temperatures amounts to a simple rescaling
in which the products and are in-2E/(RT ) 2v/T0 0h e l e0 0

dependent of T0 in accordance with these Arrhenius
forms.

Orientation tensor equation

d
tQ 2 (=v · Q 1 Q · =v) 5 F(Q) 1 G(Q, =v)

dt

F(Q) 5 2s (T)/l(T){(1 2 N/3)Q 2 N(Q · Q)d (8)
1 N(Q : Q)(Q 1 I/3)}

2
tG(Q, =v) 5 D 2 2(=v : Q)(Q 1 I/3)

3

H
Here, sd(T ) is a dimensionless parameter describing
the anisotropic drag that a molecule experiences as
it moves relative to other polymers: 0 , s # 1,d

where is the isotropic friction limit ands 5 1d

is the highly anisotropic limit. Note that Fs 5 0d

characterizes the orientation dynamics independent
of flow, whereas G describes the flow–orientation
interaction.

Remark: In this article, we only resolve uniform
cross-sectional orientation behavior. To leading or-
der in the slender fiber approximation,2 the uniaxial
representation for Q is given by

Q(z, t) 5 s(z, t) diag[21/3, 21/3, 2/3] (9)

where diag[21/3, 21/3, 2/3] is a 3-3-3 diagonal
matrix. The scalar order parameter, s(z, t), is iden-
tified with the normalized birefringence of a ne-
matic uniaxial LCP melt3,14,18:

Dn 1
2s 5 5 (3 , cos u . 21) (10)

Dn 2max

where , · . represents an average over the orien-
tation distribution function, u is the angle between
an individual molecule and the director, and Dnmax

is the maximum birefringence determined by the
values of the refractive indices parallel and perpen-
dicular to the polymer chain. For TLCP fiber pro-
cesses that are absent of difficulties such as spinline
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breaks, the LCP is well approximated as a uniaxial
nematic with director parallel to the fiber axis, and
biaxiality is a very weak effect.3

Energy equation

dT
rC 5 t̂ : D 2 = · q (11)

dt

where C is the specific heat per unit mass and q is
the heat flux vector. The term t̂ : D models viscous
heating. We follow Ziabicki,10 which is standard in
the fiber literature, by neglecting the variation of in-
ternal energy and assuming that heat flux is due to
conduction alone [eq. (20)]. We make no claims as
to the global thermodynamic consistency of these
assumptions.

Boundary Conditions

We adopt cylindrical coordinates (r, u, z), with the
axial direction coincident with the direction of grav-
ity and with orthonormal basis er , ez . The veloc-e ,u

ity is given by

v 5 (v , 0, v ) (12)r z

where we assume This torsionlessv 5 v · e 5 0.u u

assumption is for simplicity and may be generalized
to allow axisymmetric twist in the flow. The axisym-
metric free surface is given by

F(r, z, t) 5 r 2 f(z, t) 5 0 (13)

At the fiber free surface, we have the kinematic
boundary condition,

d
F 5 0 (14)

dt

the kinetic boundary condition,

(t 2 t )n 5 2s kn (15)a f s f

and the heat loss boundary condition

q · n 5 2h(T 2 T ) (16)f a

In eqs. (15) and (16), ta and Ta denote the ambient
stress and the ambient temperature at the fiber free
surface, respectively; ss denotes the surface tension
coefficient (assumed constant); n f is the unit out-
ward normal vector of the free surface [eq. (13)];
k is the mean curvature of the free surface; and h is

the heat loss coefficient, depending on processing
conditions. In cylindrical coordinates,

e 2 f er ,z zn 5 (17)1f 2
2(1 1 f ),z

1 f,zzk 5 2 (18)1 32 2
2 2f(1 1 f ) (1 1 f ),z ,z

Here, denotes differentiation with respect to the“ ”,z

axial coordinate z. We consider the heat loss coeffi-
cient to be a function of the local kinematic param-
eters [20],

mk 2r vf` `h 5 H (19)S Df m`

where and are the thermal conductivity,k , r , m` ` `

density, and viscosity of the ambient air at room
temperature, respectively. The coefficients H and m
are determined from experimental data. Other mod-
els for the heat transfer coefficient are available21; an
extensive collection of the existing theoretical and
empirical relationships between the Nusselt number
and the Reynolds number for various flow situa-
tions can be found in Ziabicki’s book.19 In this arti-
cle, for simplicity, we vary the heat loss correlation
exponent m in Eq. (19) to see the effect of heat trans-
fer coefficient. Moreover, we use a Fourier law for
the heat flux q,

q 5 2K=T (20)

where K is the thermal conductivity.
The boundary ambient stress ta is expressed in

the form

a aˆt 5 2 (p 1 p )n 2 t m (21)a f

where

f e 1 e,z r zm 5 (22)12
2(1 1 f ),z

is the unit vector tangent to the fiber-free surface in
the rz plane. This form assumes axisymmetric air
drag, with the normal and tangential components
pa and ta functions of process conditions, in addition
to a known constant barometric pressure We usep̂.
the empirical formula for the nondimensional tan-
gential component of air drag

g(vf)
at 5 C (23)d 2f
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where Cd is the air drag coefficient and g is fitted
from experimental data, g 5 1.39.22 We further as-
sume that the normal component of air drag pa is
constant. Kase and Matsuo23 included the effect of
quench air flow normal to the fiber axis, and the
final form is

g 2 1/6(vf) vaat 5 C 1 1 8 (24)d F S D G2f v

where va is the cross-flow velocity. In practice, va/v
is less than .1, and the 1/6 power of the term in
brackets renders the expression very close to 1. In
this article, we ignore cross-flow effects and only
consider air drag given by eq. (23).

Asymptotic 1-D Model for TLCP
Filaments

Upon nondimensionalizing the full set of 3-D
equations in cylindrical coordinates (see refs. 2 and
3). The following collection of dimensionless param-
eters arises:

e 5 r0/z0
21/W 5 s /rr vs 0 0

N(T) 2ã 5 3ckT /rvmelt 0
2Pe 5 rCz /Kt0 0 Bi 5 h0r0/K

« 5 E/RTmelt Es 5 2h0v0/t0z0 (25)2h̃ 5 h t /rz0 0 0 0
21/F 5 gt /z0 0

l̃ 5 l /t0 0 0
sd

2 2Br 5 h z /KT t0 0 melt 0 St 5 h0z0/rCv0r0

ṽ 5 v/Tmelt DT 5 1 2 T /Ta melt

Each of these parameters is important and carries
physical information about the geometry, the flow,
or the material rheology:

▪ h̃0 represents the effective isotropic viscosity
measured from the high temperature melt,
whereas the Weber (W) and Froude (F) num-
bers, respectively, parametrize surface tension
and gravity relative to inertia.

▪ ã parametrizes the molecular kinetic energy
per unit volume relative to inertial energy per
unit volume.

▪ The combination ãl̃0 characterizes the relax-
ational stress due to molecular rotation rela-
tive to inertial stress.

▪ sd(T) is the anisotropic drag parameter, and
sd/l̃0 parametrizes anisotropic drag on poly-

mer molecular motion relative to the sur-
rounding polymer molecules.

▪ N(T) measures the strength of the intermolec-
ular excluded-volume potential, whose shape
in turn reflects the phase transition at a critical
temperature, above which the unique equilib-
rium phase is isotropic and below which a sta-
ble nematic phase exists.

▪ Pe is the Peclet number, which is a measure of
specific heat relative to thermal conductivity.

▪ Br is the Brinkman number describing viscous
heating relative to thermal conductivity.

▪ Bi is the Biot number characterizing the heat
loss relative to thermal conductivity.

▪ St is the Stanton number, which is the dimen-
sionless heat transfer coefficient; notice that

2Bi 5 St · Pe · e .
▪ Es is the Ellis number describing the ratio of

the effective viscosity to total stress.
▪ « is the Griffith number quantifying the de-

gree of effective isotropic viscosity variation
with temperature.

Note that the characteristic temperature is chosen as
the melt temperature.

▪ A nonisothermal parameter, DT, is introduced
to measure the degree of nonisothermality.
When then and our modelT 5 T , DT 5 0a melt

reduces to the isothermal model of Forest,
Wang, and Bechtel.3

Table I summarizes typical processing conditions
and material parameters for LCP spinning pro-
cesses; Table II defines the scales from which we
nondimensionalize all equations. Table III contains
a collection of all dimensionless parameters and
typical values deduced from Tables I and II. The
relative orders of these parameters guide the nu-
merical studies that follow.

We vary the parameter DT to study the thermal
effects on our previous isothermal LCP spin model
predictions.3 Note that in dimensional units, the am-
bient temperature In simula-T [ (1 2 DT)T .a melt

tions reported here, DT ranges from 0 (isothermal)
to 0.5 because one should expect our model to be
accurate only for small DT.

The following equations follow when all physical
effects are presumed to couple at leading order ex-
cept the Biot number, which must be o(1) with re-
spect to e [e.g., This means the model2Bi , O(e )].
derivation is formally valid only when there is weak
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TABLE I
Process Parameters and Material Properties for
Typical LCP Melt Spinning Process

Process Parameters Value

Spinline length 2 m
Radius f(0) at z 5 0 2 3 1024 m
Velocity v(0) at z 5 0 0.5 m/s
Take-up velocity v(1) 5 , 10 m/s
Temperature T(0) at z 5 0 590 K
Ambient temperature Ta 300 K

Material Properties Value

Melt density r 1300 kg/m3

Effective isotropic viscosity h0
▫ 0 , 103 Pa · s

Thermal conductivity K 0.41 W/m · K
Glass transition temperature Tg 370 K
Specific heat C 1870 J/kg · K
3ckTmelt

† 13000 Pa
Number of polymer molecules per

unit volume c
5.3183 3 1023/m3

Dimensionless concentration N1 4.17 6 0.6
Surface tension ss 0.027 N/m
Relaxation time at melt temperature

l0*
0.04 , 0.1 s

▫Many rheologists suggest h0 5 0 for TLCPs. We propose that
there must be an effective isotropic viscosity, analogous to that
induced by the solvent for lyotropic LCPs.
†From Mori, Hamaguchi, & Nakamura.27

1From Metzner & Prilutski.12

*Adapted from Gregory.28

Note: The data are from a Hoechst Celanese Report on Vectra
A 910.

TABLE II
Scaling Factors for Numerical Simulations of the Process of Table I

Scale Formula Value

Radial length scale r0 5 f(0) 2 3 1024 m
Velocity scale v0 5 v(0) 0.5 m/s
Axial length scale z0 5 spinline length 2 m
Time scale t0 5 z0/v0 4 s
Temperature scale Tmelt 5 T(0) 590 K
Stress scale t0 5 h0v0/z0 32.5 , 40 Pa
Heat transfer scale

h0 5 1.352 J · m21.667 · s20.667 · K21
0.333v 0

0.667r 0

313.77 J/(m2 · s · K)

surface cooling relative to thermal conduction,
which is the fundamental limiting factor in the ap-
plication of 1-D nonisothermal slender models. This
condition is not strictly satisfied along the entire
spinline, so we are trading off the error in making
this assumption for the significant numerical cost of

a full axisymmetric simulation.7,8 All other poten-

tially small terms from Table III
1

26e.g., , 10S DPe
are retained and then explored later for a range of
values to assess the influence of weak thermal con-
ductivity. We give the minimum set of coupled
equations that govern the leading order approxi-
mation of each unknown2,3:

▪ f—free surface radius
▪ v—axial velocity
▪ u—radial velocity
▪ p—pressure
▪ s—uniaxial nematic order parameter
▪ T—temperature

The 1-D model equations for axisymmetric TLCP
filaments are

2 2(f ) 1 (vf ) 5 0t z

1 1 212 2 2 2 2(f v) 1 (f v ) 5 f 1 f 1 (f (R (s, T)vt z z eff zF W
g g211 aTU(s))) 2 bv fz

21s 1 vs 5 v (1 2 s)(2s 1 1) 2 s L (T)U(s)t z z d

u 5 2v /2z (26)

1 1
21 «(1/T21)p 5 f 2 h̃ e v 2 aTU(s)0 zW 3

2
1 aL(T)Ts(1 2 s)vz3

1
22 2 21 m 21T 1 vT 5 f (f T ) 2 2 St f [(vf) f ](T 2 T )t z z z aPe

Br
211 [R (s, T)v 1 aTU(s)]veff z zPe
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TABLE III
Dimensionless Numbers and Boundary Conditions for LCP Melt Spinning Process of Table I

Number Formula Value

Slenderness parameter e 5 r0/z0 1024

Arrhenius viscosity parameter % 5 E/(RTmelt) 10 , 22
Ellis number Es 5 2h0v0/(t0z0) 1.6 , 2.5
Froude number F 5 z0/(gt2)0 0.0127
Weber number W 5 rr0v /ss

2
0 2.4

Effective isotropic viscosity h̃0 5 h0 t0/rz2
0 0 , 0.7

Stanton number St 5 h0z0/(rCv0r0) 2.59
Biot number Bi 5 h0r0/K 0.1531
Peclet number Pe 5 rCz /(Kt0)2

0 5.9 3 106

Brinkman number Br 5 h0z /(KTmeltt )2 2
0 0 0.13 , 0.165

Drag coefficient
Cd 5 4.643 3 1026 Pa · s1.39 · m20.78

1.39z v0 0

1.61t r0 0

(8 , 9.8) 3 1022

Anisotropic drag 0 # sd # 1 0.5
Polymer kinetic energy parameter a 5 3ckTmelt/(rv 2)0 40
Molecular relaxation parameter L̃ 5 l0/t0 0.025 , 0.1
Arrhenius relaxation parameter v/Tmelt 11 , 25

Dimensionless Boundary Conditions Definition Value

Upstream velocity v(0)/v0 1
Upstream average temperature T(0)/Tmelt 1
Downstream velocity (Draw ratio) v(1)/v(0) 10 , 20

Dimensionless Temperatures Definition Value

Glass transition temperature Tg/Tmelt 0.62
Ambient temperature Ta/Tmelt 0.5

where L(T) is the scaled LCP
4C h̃d 022g 5 1.39, b 5 ,

Es
relaxation time,

L(T) 5 L̃ev(1/T21) (27)
L̃ is either a constant or proportional to if2 2(1 2 s ) ,
the orientation dependence on rotary diffusivity is
included17; is an effective 1-D flow-orien-R (s, T)eff

tation Reynolds number,
21 «(1/T21) 2R (s, T) 5 3e h̃ 1 2aTL(T)s (28)eff 0

consisting of an isotropic and an anisotropic contri-
bution (2aTL(T)s2); and U(s) 5 s(1 2 N(T)/3(1 2

defines the uniaxial bulk free energy,s)(2s 1 1))
eU(s)ds. In Appendix A, we illustrate application of
the isotropic and anisotropic stress contributions to
fit experimental data on the commercial TLCP Vec-
tra.

For transverse length and velocity scales, we
choose the upstream values of fiber radius and axial
velocity, and for axial length of the filament,

r [ f(z 5 0), v [ v(z 5 0),0 0 (29)
z [ spinline length0

With these choices, the steady form of the equation
of continuity (26)1 integrates to

2f v 5 1 (30)

and the computational domain is scaled to 0 #
z # 1.

For steady states, if we select in the heatm 5 1/3
loss coefficient form, then

1/3 21 1/3 2/3 2/3h , (vf) f 5 v /f 5 v (31)

which is the form given by Matsui24 and used by
Henson et al.10. If we select thenm 5 21,

21 21h , (vf) f 5 1 (32)

which corresponds to constant heat loss coefficient.
Note: From Table III, a realistic value for St is

O(1), and the term in
1

21 3/2 22 2Pe , O(« ), f (f T )z zPe
eq. (26) could either be suppressed in the model or
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kept as a small regularizing term. This approach in
eq. (26) allows us to use one numerical code for all
Peclet numbers. Later in this article, we study the
effect of this weak conduction term for different val-
ues of 1021, and The21 21 22 23 26Pe (Pe 5 1, 10 , 10 , 10 ).
parameters in Table III are consistent with those in
Metzner and Prilutski.12

Steady-State Solutions: Fiber
Performance Predictions

Consistent with our earlier nondimensionaliza-
tion, the upstream conditions on fiber radius, veloc-
ity, and temperature are fixed:

f(0) 5 1, v(0) 5 1, T(0) 5 1 (33)

The downstream thermal boundary condition as-
sumes axial thermal conduction is negligible, that
is,

2(f T )z (1) 5 0 (34)
z

The remaining boundary conditions are free pro-
cessing parameters to be specified/varied in the
simulations that follow:

s(0), v(1) (35)

The upstream degree of orientation, s(0), is a func-
tion of spinneret design, whereas the take-up speed
[v(1) 5 draw ratio 5 Dr] is a measure of process
speed and throughput.

COMPARISON OF ISOTHERMAL AND
NONISOTHERMAL SOLUTIONS

First, we highlight thermal effects on spun fibers.
In Figure 1, we vary only the ambient temperature,

0.5Tmelt , respectively, and observe theT 5 T ,a melt

following features:

▪ The velocity profile of the nonisothermal so-
lution is consistent with experimental obser-
vations,6,19 quite distinct from the isothermal
solution, clearly illustrating that thermal ef-
fects radically influence the qualitative hydro-
dynamic behavior.

▪ In the nonisothermal solution, the flow
smoothly approaches a constant velocity as
the temperature reaches the glass transition
value. This confirms the one-phase model is
self-consistent when the process parameters
have been reasonably approximated.

▪ The steady process reaches the final degree of
orientation very quickly in both cases. The fi-
nal orientation, or birefringence, is signifi-
cantly greater (, 20%) in the nonisothermal
case than in the isothermal case, indicating
that cooling enhances molecular alignment.

Figure 2 shows the response of isothermal/ther-
mal steady processes due to the gravity parameter
(reciprocal Froude number), for re-1 5 0, 10, 100,F

spectively.

▪ The isothermal solutions are very sensitive to
the Froude number, whereas the thermal so-
lutions are remarkably insensitive. This result
confirms the industry practice to ignore effects
of gravity in thermal spin models.

▪ Similar results are obtained if we vary the We-
ber number W (inversely proportional to sur-
face tension), the air drag coefficient b, the ef-
fective isotropic viscosity at melt temperature
h̃0 , and the air drag exponent g. That is, the
isothermal steady states are sensitive to these
parameter variations, whereas the nonisother-
mal are not. These observations may justify
the omission of the relevant physical effects in
the spinning model for steady-state simula-
tions. However, they do have a nonnegligible
impact on the realization of stable steady pro-
cesses shown in the stability analysis that fol-
lows.

▪ The nonisothermal solution is also insensi-
tive to the shape parameter for the short-range
intermolecular potential N(T). We have ex-
perimented with andN(T ) [ 4 N(T ) 5
21.5965 1 3.7232/T while all the other pa-
rameters are fixed as in Figure 1. Only negli-
gible steady-state variations are observed
however. This insensitivity to temperature
changes in the short-range intermolecular po-
tential underscores the dominant influence of
elongational flow, in contrast with weaker
shear flow.

Figure 3 shows the effect of orientation-depen-
dent rotary diffusivity, eq. (7) or (27), on both iso-
thermal and nonisothermal steady processes.
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FIGURE 1. Isothermal (dotted) and nonisothermal (solid) steady spinning solutions, with Ta 5 Tmelt, 0.5Tmelt,
respectively. All parameter values are chosen according to Table III with e 5 21, v 5 16, For˜h̃ 5 0.125, L 5 0.025.0

the figures to follow, these will be the default values unless specified. Boundary conditions are f(0) 5 v(0) 5 T(0) 5 1,
s(0) 5 0.1, v(1) 5 10.

▪ For the isothermal case, the effect is to accel-
erate the flow and reduce the orientation.

▪ For the nonisothermal case, the axial velocity,
fiber radius, and temperature are insensitive
to the coupling of orientation-dependent ro-
tary diffusivity, whereas the final birefrin-
gence is decreased by approximately 10%.

THERMAL PROCESSES: EFFECTS OF
HEAT CONDUCTION, HEAT LOSS, AND
AMBIENT TEMPERATURE

Figure 4 shows the effect of Peclet number on
nonisothermal solutions (recall that Pe is a measure
of specific heat relative to thermal conductivity). A
typical LCP melt has very high Table6Pe , O(10 ),
III; the value is plotted in Figure 4.3Pe 5 10

▪ All solutions are essentially unchanged with
respect to variations of Measurable3Pe . 10 .
process changes occur in the nonphysical
range 1 # Pe # 10.

Figure 5 exhibits the effect of the heat-transfer
parameter m on nonisothermal solutions.

▪ With an increase in the heat transfer coeffi-
cient, the temperature naturally decreases
faster. This results in a fiber that becomes thin-
ner near the orifice and more aligned because
of the temperature coupling to the effective
Reynolds number [eq. (28)].

▪ The ambient temperature has a very signifi-
cant effect on steady-state solutions (Figure 6).
An increase in DT (i.e., a cooler ambient) leads
to rapid temperature variations that couple to
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FIGURE 2. Sensitivity of isothermal versus thermal steady states due to changes of the gravity parameter (reciprocal
Froude number), F21. Dotted curve, dashed curve, solid curve,1 1 15 0; 5 10; 5 100.F F F
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FIGURE 3. The effect of orientation-dependent rotary diffusivity on isothermal and nonisothermal solutions. Solid
curves, without rotary diffusivity; dashed curves, with rotary diffusivity. All other parameter values are identical to Figure
1 with DT 5 0.5.
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FIGURE 4. Effect of Peclet number Pe on nonisothermal steady spinning solutions where T 5 0.5 T .ambient melt

Increased Peclet number corresponds to a lower thermal conductivity at fixed specific heat.

the hydrodynamics through the effective
Reynolds number [eq. (28)].

Figure 6 further suggests that a cooler ambient results
in a more oriented fiber. This model prediction is con-
sistent with industrial experience.

We note that this model yields lower orientation
for cooler ambients when nonphysical parameters
are specified. This amplifies the importance of ac-
curate material and flow characterization before ap-
plying a mathematical model to real experiments.

EFFECT OF DRAW RATIO:
NONISOTHERMAL MODEL SOLUTIONS
AND SPUN FIBER PROPERTIES
(BIREFRINGENCE, MODULUS, AND
AXIAL FORCE)

Figure 7 depicts the effect of draw ratio Dr on
nonisothermal processes. The draw ratio naturally

affects the axial velocity and radius of the fiber,
whereas it has a much weaker effect on the nematic
order parameter (birefringence) s and temperature.

We note from Figure 7 the agreement between
our model predictions and experimental evi-
dence6,13 of the effect of draw ratio Dr on spinline
temperature at a fixed location. That is, the temper-
ature at fixed locations slightly decreases at faster
spinline speed. Our model does not yield this be-
havior in other parameter regimes that are unre-
lated to actual spinline data. This reversal of fiber
response to a given process condition again under-
scores both the complexity of the fiber spinning
physics and model equations [eq. (26)], and the im-
portance of material characterization.

It is well known that molecular orientation affects
many physical properties of natural and man-made
fibers such as tensile strength and modulus. There-
fore, a description of the dependence of final fiber
orientation, s(1), on draw ratio is important. Kuhn
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FIGURE 5. Effect of m, the heat loss correlation exponent in eq. (19), on nonisothermal steady spinning solutions
where T 5 0.5 T .ambient melt

and Grün25 analyzed a system of rigid, asymmetric
particles embedded in a medium of infinite viscos-
ity. Starting with a random distribution of particles
and assuming that their rotation is affine, they ob-
tained an analytic relation between the normalized
birefringence s(1) and draw ratio Dr:

32Dr 1 1
s(1) 5

32(Dr 2 1)
33Dr

3 1/22 atan[(Dr 2 1) ] (36)
3 3/22(Dr 2 1)

addition to all other material and process parame-
ters.

In Figure 8a, we compare our predictions corre-
sponding to two different spinneret values of ori-
entation, s(0), with the result given by eq. (36).

▪ The qualitative agreement between our spin
model prediction and the Kuhn–Grün rela-
tion [eq. (36)] for normalized birefringence
versus draw ratio is remarkable. Thus, trends
in spinline performance are captured by eq.
(36).

▪ Actual quantitative values of spun fiber bire-
fringence cannot be captured by eq. (36) be-
cause translations of the curve occur due to
other material or process conditions not re-
solved by this relation. For example, Figure 8a
shows shifts in the relation due to spinneret
values of orientation.

This model has been used to infer birefringence in
fiber spinning processes.14 We replace this “pro-
cess–optical relation” by the solution of our TLCP
spin model. The tradeoff is the solution of a bound-
ary-value problem, which must be solved numeri-
cally, but for which we can predict response of the
normalized birefringence, s(1), to Dr (draw ratio) in
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FIGURE 6. Steady solutions reflecting variations in the base state, Figure 1, due to changes in the ambient
temperature We vary from 0 (isothermal) to 0.5 in increments of 0.05. Arrows indicate theT . DT 5 1 2 T /Tambient ambient melt

direction of increasing DT.

Picken et al.14 obtained an expression for an im-
portant performance property, the fiber modulus E,
in terms of fiber birefringence s(1) in the form

1 1 1
5 1 (1 2 s(1)) (37)

E e 3e3 2

where e3 is the chain modulus (approx. 240 GPa for
PPTA) and e2 is the shear modulus (approx. 2 GPa
for PPTA). Using this relation, we calculate the
modulus E as a function of draw ratio in Figure 8b.
Our prediction agrees qualitatively with the result
shown in Picken et al.14

In Figure 8c we plot the dimensionless axial force
at take-up

F (1) 5axial

1
2 21f R (s, T) v 1 aTU(s) 2 (38)F eff z G*Wf z51

as a function of draw ratio Dr. The dimensional ax-
ial force is Faxial(1) times the characteristic force,
which is about 1.6 3 1026 N from Table III. Notice
that for small draw ratios less than 2.227, the
axial force is negative. This is due to the presence of
gravity, as explained in Appendix B. We remark
that the constitutive-based relation [eq. (38)], when
linearized about nearly isotropic nematics (s , 0),
corresponds to a standard stress-optical law
employed in the fiber industry for PET-like mate-
rials:
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FIGURE 7. Effect of draw ratio Dr on nonisothermal steady spinning solutions where DashedT 5 0.5 T .ambient melt

curves, Dr 5 5; solid curves, Dr 5 10; dotted curves, Dr 5 15; dash-dot curves, Dr 5 20.

Dn ˆ5 s 5 C F (1) 1 C (39)opt axial
Dnmax

where is a translational constant.3Ĉ

Material Bounds on Throughput:
Linearized Stability of Steady-
State Solutions

There are many process and material variables
that make the spinning process unstable when some
critical conditions are exceeded. Instability leads to
irregular fibers or induces breakage of the individ-
ual filaments of the spinline. Hence, stability anal-

yses of steady-state solutions are very important.
The traditional nonisothermal two-phase spin mod-
els do not have a continuous slope at the glass tran-
sition location, which prevents formulation of a lin-
earized stability problem. However, the one-phase
model we employ in this article allows us to per-
form a linearized stability analysis on steady-state
solutions. In this section, we focus on linearized
temporal stability of steady-state solutions by
studying the critical draw ratio (the critical fiber spin-
ning speed above which the process is linearly unstable)
and its variation with respect to various process and
material parameters.

Figure 9a depicts the critical draw ratio Dr* as a
function of the ambient temperature, where all the
material parameters are chosen according to Table
III. For this parameter regime, the critical draw ratio de-
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FIGURE 8. (a) Normalized fiber birefringence, s(1), as a function of draw ratio, Dr. The top two curves correspond to
our spin model predictions for two nearby values of upstream orientation, whereas the lower curve is the graph of the
Kuhn–Grün relation that does not resolve dependence on s(0). (b) Spun fiber modulus, E (units of GPa), as a function
of Dr from the empirical formula of Picken [eq. (36). (c) Axial force at take-up as a function of Dr from the constitutive
relations of our spin model.
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FIGURE 9. (a) The effect of the ambient temperature on critical draw ratio, Dr *. (b) the Effect of the effective isotropic
viscosity on critical draw ratio. (c) The effect of the relaxation time on critical draw ratio with a 5 4, v 5 11. In˜ ˜L h 5 0,
(b)–(c), the ambient temperature is fixed at 0.5 (i.e., DT 5 0.5).

creases with a cooler ambient. Combining Figure 9a
with Figure 6, the model predicts that a cooler am-
bient yields increased birefringence, but lowers the max-
imum stable spinning speed. This competition among
processing goals has to be balanced.

Now we fix the ambient temperature as shown
in Table III and study the effects of various material
parameters on the critical draw ratio. Our results are
plotted in Figures 9b–d, 10, 11.

From Figure 9b, we determine that, as the effec-
tive isotropic viscosity parameter, h̃0, decreases
from 0.375 to 0.01, the critical draw ratio drops on
order of magnitude, from 31 to 2.9. For nonisothermal
LCP spinning, the effective isotropic viscosity is a pri-
mary material property that determines bounds on stable
throughput. Recall that we have identified how this
material property may be measured from a high-
temperature melt viscosity experiment. Previous
constitutive assumptions for TLCPs do not resolve

this isotropic stress contribution. To test whether
this Doi constitutive model without isotropic vis-
cosity can achieve higher stable draw ratios, in Fig-
ure 9c, we set the effective isotropic viscosity to
zero, and then promote effective anisotropic viscos-
ity by varying the relaxation parameter L̃. The crit-
ical draw ratio remains small. This parameter study
indicates the need to retain a nonzero effective iso-
tropic viscosity in the range h̃0 between 0.1 and 0.2
to yield predictions consistent with industrial ob-
servations.

Figures 10 and 11 explore temperature-depen-
dent rheological and heat transfer properties, re-
spectively. All results suggest that strong thermal de-
pendence limits stable throughput.

▪ Figure 10 shows lower throughput for in-
creases in the TLCP kinetic energy parameter
(a), Griffith number (e, which models the rate
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FIGURE 10. (a) The effect of a, the dimensionless molecular kinetic energy density, on critical draw ratio. (b) The
effect of e, the scaled activation energy, on critical draw ratio. (c) The effect of v, the scaled LCP relaxation rate, on
critical draw ratio. Here, the ambient temperature is fixed at 0.5 (i.e., DT 5 0.5).

of isotropic viscous hardening as the TLCP
temperature drops down the spinline), and re-
laxation exponent (v, which affects aniso-
tropic viscous hardening as temperature
drops).

▪ Figure 11a shows that in the range of weak
thermal conductivity (high Pe), with all other
conditions prescribed with realistic values, the
critical draw ratio saturates at around Dr* ,
13.
Remark: The limit Pe .. 1 is numerically very
sensitive because it corresponds physically to
transport (first-order derivatives) dominating
conduction (second-order derivatives). We
wanted to established numerical convergence
to confidently resolve the realistic, low con-

ductivity of TLCPs. To achieve convergence,
an adaptive mesh refinement code26 and
iteration in Pe is necessary to accurately
calculate these steady states and stability
bounds.

▪ Figures 11b,c show that enhanced heat trans-
fer, either from the heat loss coefficient (St) or
exponent (m), lowers stable throughput.

Finally, we note that in realistic and processing pa-
rameter regimes, the critical draw ratio is insensitive
to surface tension (W), gravity (F), and air drag co-
efficient (b). These results (not shown) are notable
only because they are very important parameters for
isothermal stability.3 Thus, thermal effects dominate
these “hydrodynamic” effects.
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FIGURE 11. (a) The effect of the Peclet number, the specific heat relative to thermal conductivity, on critical draw
ratio. (b) The effect of m, the heat loss correlation exponent, on critical draw ratio. (c) The effect of the Stanton number,
dimensionless heat transfer coefficient, on critical draw ratio. Here, the ambient temperature is fixed at 0.5 (i.e., DT 5
0.5).

Conclusions

This study underscores some important points
about spinning of TLCPs:

▪ Process stability has little correlation with
qualitative dependence of steady states. In
other words, there is no visible feature a pro-
cess engineer might monitor as an indicator
that the spinline is near critical.

▪ Some rheological properties, in particular the
effective isotropic viscosity of the TLCP at
melt temperature, are critical to process sta-
bility, which calls for further refinement in
constitutive equations and experimental mea-
surement by the rheology community.

▪ Trends in spinline performance due to mate-
rial variations are often reversed in isothermal
versus nonisothermal simulations. This result
raises caution against application of isother-
mal models for real spinlines and emphasizes
the critical role of thermodynamics in spin-
ning processes.
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Appendix A: An Experimental
Confirmation of Constitutive
Model for TLCPs

In simple shear flows of TLCPs with an imposed
velocity field given by (my, 0, 0), the shear stress
calculated from the constitutive relation [eqs. (3)–
(6)], in which Q has an explicit biaxial form2 is

I I
Q 5 s n n 2 1 b n n 2 (40)S 2 3 D S 2 2 D3 3

with order parameters (s, b) and directors ni, i 5 1,
2, 3, given by

3ckTl(T,s,b)
t 5 h(T) 1xy F 2

29(s 2 b)
1 2S D2(2 1 s 1 b)

1
2(s 2 b) 1S (3s (T))d

2(2 1 s 1 b 2 (s 2 b) ) m (41)DG
where m is the shear rate. The effective isotropic vis-
cosity and relaxation times are from eqs. (5) and (6):

E/R(1/T21/T )0h(T) 5 h e0 (42)
E/R(1/T21/T )0l(T) 5 l e0
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FIGURE 12. Comparison between the model prediction and experimental data. The symbols represent the
experimental data, whereas the curves give the model predictions. The agreement is very good.

where v 5 E/R is assumed. The effective shear vis-
cosity is defined as [26]

txyh 5 (43)eff m

given explicitly by

23ckTl(T,s,b) 9(s 2 b)
h 5 h(T) 1 1 2eff S D22 (2 1 s 1 b)

1
2 2(s 2 b) 1 (2 1 s 1 b 2 (s 2 b) ) (44)S D(3s(T))

where the order parameters (s, b) are solutions of
the governing equation for the orientation tensor Q
in the shear flow field with respect to the given
shear rate m.

With the following parameter values,

E
5 6879.4 K, 3ck 5 89.0566 Pa/K,

R

h 5 3.1152 Pa · s, l 5 0.01 s (45)0 0

T 5 583 K, N 5 4, v 5 e, s 5 10 d

we calculate the shear viscosity by first solving the
orientation tensor equation [eq. (8)] at six given
shear rates in accordance with the experimental

data for Vectra 910 (HCC report) and then using the
formula [eq. (44)], with respect to three different val-
ues of temperature. Figure 12 plots the comparison
between the model prediction and the experimental
data for Vectra 910. The agreement is very good.
This confirms that the use of the constitutive model
for TLCP materials, such as Vectra 910, is plausible.

Appendix B: A Minimum Draw
Ratio

Gravity accelerates the jet and can achieve a ve-
locity beyond the take-up velocity somewhere in the
spinline. Therefore, to satisfy the downstream
boundary condition, the jet has to slow down near
the take-up location, which can lead to a negative
axial force. To see this more clearly, consider a free
jet driven by gravity only. Then, one has

dv
5 g (46)

dt

equivalently,

v(t) 5 gt 1 v(0) (47)
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To simplify the presentation, assume the jet reaches
downstream with an average velocity defined
here:

v(0) 1 v(1) 1
^v& 5 5 (1 1 Dr) m/s (48)

2 4

using the data in Table III. Therefore,

spinline length 5 2 m 5 ^v& · total time (49)

and the total time it takes for the jet to reach down-
stream from upstream is

8
total time 5 s (50)

1 1 Dr

This gives the change of axial velocity from up-
stream to downstream

8
Dv 5 g · total time 5 9.8 · (51)

1 1 Dr

If Dr 5 1.5, then Dv 5 31.36 m/s; if Dr 5 10, then
Dv 5 7.1272 m/s. To avoid deceleration of the jet,
one needs

Dv # v(1) 2 v(0) 5 (Dr 2 1) v(0) (52)

Because v(0) 5 0.5 m/s, this condition with the help
of eq. (51) yields

Dr $ 12.56 (53)

Hence, for a free falling jet, the downstream velocity
has to be large enough to avoid negative axial force
due to deceleration of the jet. In our more complex
flow problem, the critical draw ratio is approxi-
mately 2.2.
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